Serpentine locomotion through elastic energy release

نویسندگان

  • F Dal Corso
  • D Misseroni
  • N M Pugno
  • A B Movchan
  • N V Movchan
  • D Bigoni
چکیده

A model for serpentine locomotion is derived from a novel perspective based on concepts from configurational mechanics. The motion is realized through the release of the elastic energy of a deformable rod, sliding inside a frictionless channel, which represents a snake moving against lateral restraints. A new formulation is presented, correcting previous results and including situations never analysed so far, as in the cases when the serpent's body lies only partially inside the restraining channel or when the body has a muscle relaxation localized in a small zone. Micromechanical considerations show that propulsion is the result of reactions tangential to the frictionless constraint and acting on the snake's body, a counter-intuitive feature in mechanics. It is also experimentally demonstrated that the propulsive force driving serpentine motion can be directly measured on a designed apparatus in which flexible bars sweep a frictionless channel. Experiments fully confirm the theoretical modelling, so that the presented results open the way to exploration of effects, such as variability in the bending stiffness or channel geometry or friction, on the propulsive force of snake models made up of elastic rods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serpentine Robot Locomotion: Implementation through Simulation

Machine locomotion using wheels, tracks or legs is common where as generating locomotion in a limbless, wheelless system is more challenging. Wheeled locomotion and legged locomotion have already been studied by many researchers in detail. On the contrary the limbless locomotion has drawn very limited degree of interest. In limbless locomotion (of a serpent) the cyclic changes in the body shape...

متن کامل

Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA

This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...

متن کامل

Snake-Like Mobile Robots

Biological snakes’ diverse locomotion modes and physiology make them supremely adapted for environment. When their unique movements are broadly classified, the following four gliding modes exist: 1) Serpentine locomotion; 2) Rectilinear locomotion; 3) Concertina locomotion; 4) Side winding locomotion. However, the serpentine locomotion is the movement seen typically in almost all kinds of snake...

متن کامل

Elastic and length-force characteristics of the gastrocnemius of the hopping mouse (Notomys alexis) and the rat (Rattus norvegicus).

The aim of this study was to compare the contractile and series elastic properties of terrestrial mammals that use bipedal versus quadrupedal gaits. The gastrocnemius muscle of the hopping mouse (body mass 30.2 +/- 2.4 g, mean +/- S.D.) and the rat (313 +/- 10.7 g) were compared with data from the literature for the wallaby and the kangaroo rat to distinguish scaling effects and locomotion-rela...

متن کامل

A study of snake-like locomotion through the analysis of a flexible robot model

We examine the problem of snake-like locomotion by studying a system consisting of a planar inextensible elastic rod with adjustable spontaneous curvature, which provides an internal actuation mechanism that mimics muscular action in a snake. Using a Cosserat model, we derive the equations of motion in two special cases: one in which the rod can only move along a prescribed curve, and one in wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017